

# 2STX2360

# Low voltage fast-switching PNP power transistor

#### **Features**

- Very low collector-emitter saturation voltage
- High current gain characteristic
- Fast-switching speed

## **Applications**

- Emergency lighting
- LED
- Voltage regulation
- Relay drive

### **Description**

The device is a PNP transistor manufactured using new "PB-HDC" (power bipolar high density current) technology. The resulting transistor shows exceptional high gain performances coupled with very low saturation voltage.

The complementary NPN type is the 2STX1360.

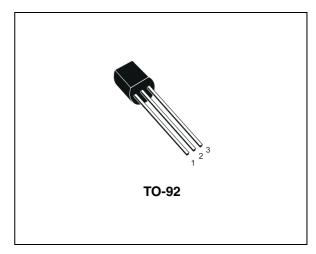



Figure 1. Internal schematic diagram

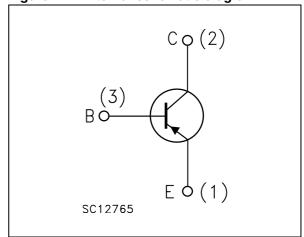



Table 1. Device summary

| Order code | Marking | Package | Packaging |
|------------|---------|---------|-----------|
| 2STX2360   | X2360   | TO-92   | BAG       |

March 2010 Doc ID 17226 Rev 1 1/9

www.st.com

# 1 Absolute maximum ratings

Table 2. Absolute maximum ratings

| Symbol           | Parameter                                      | Value      | Unit |
|------------------|------------------------------------------------|------------|------|
| V <sub>CBO</sub> | Collector-base voltage (I <sub>E</sub> = 0)    | -60        | V    |
| V <sub>CEO</sub> | Collector-emitter voltage (I <sub>B</sub> = 0) | -60        | V    |
| V <sub>EBO</sub> | Emitter-base voltage (I <sub>C</sub> = 0)      | -6         | V    |
| I <sub>C</sub>   | Collector current                              | -3         | Α    |
| I <sub>CM</sub>  | Collector peak current (t <sub>P</sub> < 5 ms) | -5         | Α    |
| I <sub>B</sub>   | Base current                                   | -0.2       | Α    |
| I <sub>BM</sub>  | Base peak current (t <sub>P</sub> < 5 ms)      | -0.4       | Α    |
| P <sub>TOT</sub> | Total dissipation at T <sub>amb</sub> = 25 °C  | 1          | W    |
| T <sub>STG</sub> | Storage temperature                            | -65 to 150 | °C   |
| T <sub>J</sub>   | Max. operating junction temperature            | 150        | ů    |

Table 3. Thermal data

| Symbol            | Parameter                               | Value | Unit |
|-------------------|-----------------------------------------|-------|------|
| R <sub>thJA</sub> | Thermal resistance junction-ambient Max | 125   | °C/W |

## 2 Electrical characteristics

T<sub>CASE</sub> = 25 °C; unless otherwise specified.

Table 4. Electrical characteristics

| Symbol                              | Parameter                                      | Test conditions                                   | Min. | Тур. | Max. | Unit |
|-------------------------------------|------------------------------------------------|---------------------------------------------------|------|------|------|------|
| I <sub>CBO</sub>                    | Collector cut-off current (I <sub>E</sub> = 0) | V <sub>CB</sub> = - 60 V                          |      |      | -100 | nA   |
| I <sub>EBO</sub>                    | Emitter cut-off current (I <sub>C</sub> = 0)   | V <sub>EB</sub> = - 6 V                           |      |      | -100 | nA   |
| V <sub>BE(on)</sub>                 | Base-emitter on voltage                        | $V_{CE} = -2 V$ $I_{C} = -100 \text{ mA}$         | -630 | -650 | -730 | mV   |
| v (1)                               | Collector-emitter                              | $I_C = -2 A$ $I_B = -100 \text{ mA}$              |      | -200 | -320 | mV   |
| V <sub>CE(sat)</sub> <sup>(1)</sup> | saturation voltage                             | $I_C = -3 \text{ A}$ $I_B = -150 \text{ mA}$      |      | -300 | -500 | mV   |
| V <sub>BE(sat)</sub> (1)            | Base-emitter saturation voltage                | $I_C = -2 \text{ A}$ $I_B = -100 \text{ mA}$      |      | -0.9 | -1.2 | V    |
| h <sub>FE</sub> <sup>(1)</sup>      | DC aurrent gain                                | I <sub>C</sub> = - 100 mA V <sub>CE</sub> = - 2 V | 80   |      |      |      |
| IIFE` ′                             | DC current gain                                | $I_C = -1 A$ $V_{CE} = -2 V$                      | 160  |      | 400  |      |
|                                     | Resistive load                                 |                                                   |      |      |      |      |
| t <sub>d</sub>                      | Delay time                                     | $I_C = -3 A$ $V_{CC} = -10 V$                     |      | 10   | 15   | ns   |
| t <sub>r</sub>                      | Rise time                                      | $I_{B(on)} = -I_{B(off)} = -300 \text{ mA}$       |      | 75   | 100  | ns   |
| $t_s$                               | Storage time                                   | $V_{BE(off)} = 5V$                                |      | 250  | 350  | ns   |
| t <sub>f</sub>                      | Fall time                                      |                                                   |      | 35   | 50   | ns   |
| f <sub>T</sub>                      | Transition frequency                           | I <sub>C</sub> = - 0.1 A V <sub>CE</sub> = - 10 V |      | 130  |      | MHz  |

<sup>1.</sup> Pulse test: pulse duration  $\leq$  300  $\mu$ s, duty cycle  $\leq$  2 %

# 2.1 Typical characteristics (curves)

Figure 2. DC current gain  $(V_{CE} = -2 V)$ 

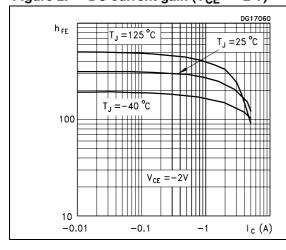
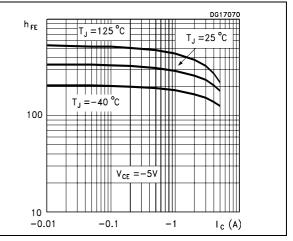




Figure 3. DC current gain  $(V_{CE} = -5 V)$ 



577

Figure 4. Collector emitter saturation voltage Figure 5. Base emitter saturation voltage

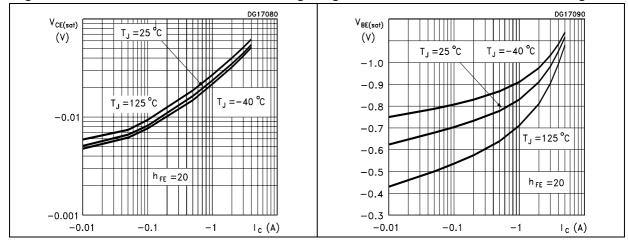
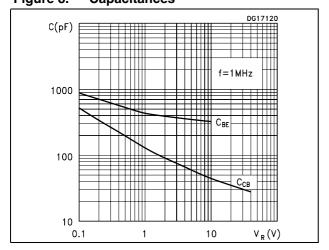
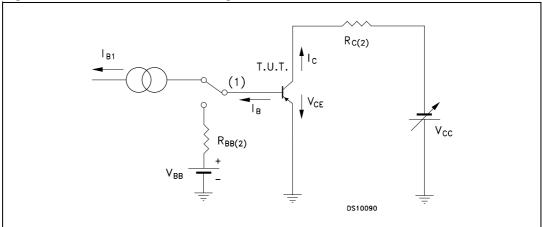




Figure 6. Figure 7. Resistive load switching off Resistive load switching on DG17100 t (ns) t (ns)  $V_{CC} = -10V$  $V_{CC} = -10V$  $h_{FE} = 10$  $h_{FE} = 10$  $V_{BE(off)} = 5V$  $V_{BE(off)} = 5V$  $-I_{B(on)} = I_{B(off)}$  $-I_{B(on)} = I_{B(off)}$ 100 1000  $t_{r}$ ts t<sub>d</sub> t, 10 100 10 -1 -1.5 -2.0 -2.5 -0.5 -1.5 I<sub>C</sub> (A) -1 -2.5I<sub>C</sub> (A)


Figure 8. Capacitances



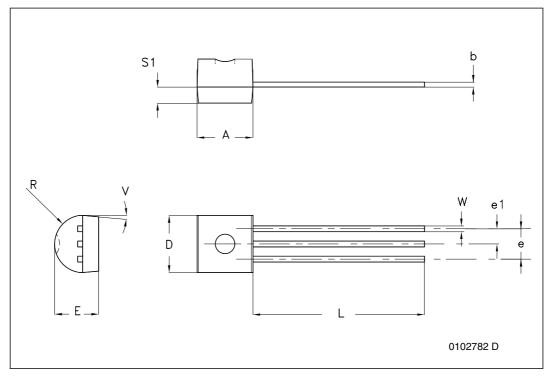
-2

## 2.2 Test circuits

Figure 9. Resistive load switching



- 1. Fast electronic switch
- 2. Non-inductive resistor


# 3 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK<sup>®</sup> packages, depending on their level of environmental compliance. ECOPACK<sup>®</sup> specifications, grade definitions and product status are available at: <a href="https://www.st.com">www.st.com</a>. ECOPACK<sup>®</sup> is an ST trademark.



#### TO-92 bulk shipment mechanical data

| Dim. | mm.   |      |       |  |
|------|-------|------|-------|--|
| Dim. | Min.  | Тур. | Max.  |  |
| Α    | 4.32  |      | 4.95  |  |
| b    | 0.36  |      | 0.51  |  |
| D    | 4.45  |      | 4.95  |  |
| E    | 3.30  |      | 3.94  |  |
| е    | 2.41  |      | 2.67  |  |
| e1   | 1.14  |      | 1.40  |  |
| L    | 12.70 |      | 15.49 |  |
| R    | 2.16  |      | 2.41  |  |
| S1   | 0.92  |      | 1.52  |  |
| W    | 0.41  |      | 0.56  |  |
| V    |       | 5°   |       |  |





Revision history 2STX2360

# 4 Revision history

Table 5. Document revision history

| Date        | Revision | Changes          |
|-------------|----------|------------------|
| 04-Mar-2010 | 1        | Initial release. |

#### Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2010 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com



Doc ID 17226 Rev 1

9/9